avatar

AngYi

Aim for the stars, and beyond.

  • 首页
  • 分类
  • 标签
  • 归档
  • 相册
  • 关于我
Home 【PyTorch】4.构建模型
文章

【PyTorch】4.构建模型

Posted 2022-04-16 Updated 2023-10- 17
By AngYi
33~43 min read

1. 构建模型可以用的“砖块”

1.2 自带“砖块”

深度学习模型一般由各种模型层组合而成。

torch.nn中内置了非常丰富的各种模型层。它们都属于nn.Module的子类,具备参数管理功能。

1.2.1 基础砖块

接口名称简介
nn.Linear全连接
nn.Flatten展平
nn.BatchNorm1d/2d/3d批标准化通过线性变换将输入批次缩放平移到稳定的均值和标准差。
nn.Dropout/2d/3d随机失活
nn.Threshold限幅层当输入大于或小于阈值范围时,截断。
nn.ConstantPad2d二维常数填充层对二维张量样本填充常数扩展长度
nn.ReplicationPad1d一维复制填充层对一维张量样本通过复制边缘值填充扩展长度。
nn.ZeroPad2d二维零值填充层对二维张量样本在边缘填充0值.
nn.GroupNorm组归一化FAIR何恺明等人提出组归一化:替代批归一化,不受批量大小限制
nn.LayerNorm层归一哈化较少使用
nn.InstanceNorm2d样本归一化较少使用

1.2.2 卷积相关“砖块”

接口名称简介
nn.Cov1d/2d/3d卷积一维常用于文本,二维常用于图像,三维常用于视频
nn.MaxPool1d/2d/3d最大池化
nn.AdaptiveMaxPool2d二维自适应最大池化无论输入图像如何变化,输出一定。
nn.FractionalMaxPool2d二维分数最大池化二维分数最大池化。普通最大池化通常输入尺寸是输出的整数倍。而分数最大池化则可以不必是整数。分数最大池化使用了一些随机采样策略,有一定的正则效果,可以用它来代替普通最大池化和Dropout层
nn.AvgPool2d二维平均池化
nn.AdaptiveAvgPool2d二维自适应平均池化
nn.ConvTranspose2d二维卷积转置层俗称反卷积层。并非卷积的逆操作,但在卷积核相同的情况下,当其输入尺寸是卷积操作输出尺寸的情况下,卷积转置的输出尺寸恰好是卷积操作的输入尺寸。在语义分割中可用于上采样。
nn.Upsample上采样层操作效果和池化相反。可以通过mode参数控制上采样策略为"nearest"最邻近策略或"linear"线性插值策略。
nn.Unfold滑动窗口提取层实际上,卷积操作可以等价于nn.Unfold和nn.Linear以及nn.Fold的一个组合
nn.Fold逆滑动窗口提取层

1.2.3 循环神经网络 "砖块"

  • nn.Embedding:嵌入层。一种比Onehot更加有效的对离散特征进行编码的方法。一般用于将输入中的单词映射为稠密向量。嵌入层的参数需要学习。
  • nn.LSTM:长短记忆循环网络层【支持多层】。最普遍使用的循环网络层。具有携带轨道,遗忘门,更新门,输出门。可以较为有效地缓解梯度消失问题,从而能够适用长期依赖问题。设置bidirectional = True时可以得到双向LSTM。需要注意的时,默认的输入和输出形状是(seq,batch,feature), 如果需要将batch维度放在第0维,则要设置batch_first参数设置为True。
  • nn.GRU:门控循环网络层【支持多层】。LSTM的低配版,不具有携带轨道,参数数量少于LSTM,训练速度更快。
  • nn.RNN:简单循环网络层【支持多层】。容易存在梯度消失,不能够适用长期依赖问题。一般较少使用。
  • nn.LSTMCell:长短记忆循环网络单元。和nn.LSTM在整个序列上迭代相比,它仅在序列上迭代一步。一般较少使用。
  • nn.GRUCell:门控循环网络单元。和nn.GRU在整个序列上迭代相比,它仅在序列上迭代一步。一般较少使用。
  • nn.RNNCell:简单循环网络单元。和nn.RNN在整个序列上迭代相比,它仅在序列上迭代一步。一般较少使用。

1.2.3 Transformer相关层

  • nn.Transformer:Transformer网络结构。Transformer网络结构是替代循环网络的一种结构,解决了循环网络难以并行,难以捕捉长期依赖的缺陷。它是目前NLP任务的主流模型的主要构成部分。Transformer网络结构由TransformerEncoder编码器和TransformerDecoder解码器组成。编码器和解码器的核心是MultiheadAttention多头注意力层。
  • nn.TransformerEncoder:Transformer编码器结构。由多个 nn.TransformerEncoderLayer编码器层组成。
  • nn.TransformerDecoder:Transformer解码器结构。由多个 nn.TransformerDecoderLayer解码器层组成。
  • nn.TransformerEncoderLayer:Transformer的编码器层。
  • nn.TransformerDecoderLayer:Transformer的解码器层。
  • nn.MultiheadAttention:多头注意力层。

1.3 自定义“砖块”

如果这些内置模型层不能够满足需求,我们也可以通过继承nn.Module基类构建自定义的模型层。

因此,我们只要继承nn.Module基类并实现forward方法即可自定义模型层。

import torch
from torch import nn
import torch.nn.functional as F


class Linear(nn.Module):
    __constants__ = ['in_features', 'out_features']

    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            nn.init.uniform_(self.bias, -bound, bound)

    def forward(self, input):
        return F.linear(input, self.weight, self.bias)

    def extra_repr(self):
        return 'in_features={}, out_features={}, bias={}'.format(
            self.in_features, self.out_features, self.bias is not None
        )

2. 构建模型的3种方法

import torch 
from torch import nn
from torchsummary import summary

2.1 继承nn.module类自定义模型

这种方式最为常见,用来做一些中等大小模型。

以下是继承nn.Module基类构建自定义模型的一个范例。模型中的用到的层一般在__init__函数中定义,然后在forward方法中定义模型的正向传播逻辑。

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
        self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
        self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.dropout = nn.Dropout2d(p = 0.1)
        self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
        self.flatten = nn.Flatten()
        self.linear1 = nn.Linear(64,32)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(32,1)
        self.sigmoid = nn.Sigmoid()

    def forward(self,x):
        x = self.conv1(x)
        x = self.pool1(x)
        x = self.conv2(x)
        x = self.pool2(x)
        x = self.dropout(x)
        x = self.adaptive_pool(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.relu(x)
        x = self.linear2(x)
        y = self.sigmoid(x)
        return y
net = Net()
print(net)
Net(
  (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1))
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (dropout): Dropout2d(p=0.1, inplace=False)
  (adaptive_pool): AdaptiveMaxPool2d(output_size=(1, 1))
  (flatten): Flatten()
  (linear1): Linear(in_features=64, out_features=32, bias=True)
  (relu): ReLU()
  (linear2): Linear(in_features=32, out_features=1, bias=True)
  (sigmoid): Sigmoid()
)

2.2 使用nn.Sequential按层顺序构建模型

使用nn.Sequential按层顺序构建模型无需定义forward方法。仅仅适合于简单的模型。

net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,1))
net.add_module("sigmoid",nn.Sigmoid())

print(net)
net = nn.Sequential(
    nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Dropout2d(p = 0.1),
    nn.AdaptiveMaxPool2d((1,1)),
    nn.Flatten(),
    nn.Linear(64,32),
    nn.ReLU(),
    nn.Linear(32,1),
    nn.Sigmoid()
)

print(net)
from collections import OrderedDict

net = nn.Sequential(OrderedDict(
          [("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)),
            ("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)),
            ("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)),
            ("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)),
            ("dropout",nn.Dropout2d(p = 0.1)),
            ("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))),
            ("flatten",nn.Flatten()),
            ("linear1",nn.Linear(64,32)),
            ("relu",nn.ReLU()),
            ("linear2",nn.Linear(32,1)),
            ("sigmoid",nn.Sigmoid())
          ])
        )
print(net)
summary(net,input_shape= (3,32,32))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 32, 30, 30]             896
         MaxPool2d-2           [-1, 32, 15, 15]               0
            Conv2d-3           [-1, 64, 11, 11]          51,264
         MaxPool2d-4             [-1, 64, 5, 5]               0
         Dropout2d-5             [-1, 64, 5, 5]               0
 AdaptiveMaxPool2d-6             [-1, 64, 1, 1]               0
           Flatten-7                   [-1, 64]               0
            Linear-8                   [-1, 32]           2,080
              ReLU-9                   [-1, 32]               0
           Linear-10                    [-1, 1]              33
          Sigmoid-11                    [-1, 1]               0
================================================================
Total params: 54,273
Trainable params: 54,273
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.011719
Forward/backward pass size (MB): 0.359634
Params size (MB): 0.207035
Estimated Total Size (MB): 0.578388
----------------------------------------------------------------

2.3 大模型继承nn.Module基类,里面封装子模型

当模型的结构比较复杂时,我们可以应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)对模型的部分结构进行封装。

这样做会让模型整体更加有层次感,有时候也能减少代码量。

注意,在下面的范例中我们每次仅仅使用一种模型容器,但实际上这些模型容器的使用是非常灵活的,可以在一个模型中任意组合任意嵌套使用。

2.3.1 使用nn.Sequential作为模型容器

这种我个人使用最多,易于理解。

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1))
        )
        self.dense = nn.Sequential(
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1),
            nn.Sigmoid()
        )
    def forward(self,x):
        x = self.conv(x)
        y = self.dense(x)
        return y 

net = Net()

2.3.2 使用nn.ModelList作为容器

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.layers = nn.ModuleList([
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1)),
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1),
            nn.Sigmoid()]
        )
    def forward(self,x):
        for layer in self.layers:
            x = layer(x)
        return x
net = Net()
print(net)

2.3.3 使用nn.ModuleDict作为模型容器

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
               "pool": nn.MaxPool2d(kernel_size = 2,stride = 2),
               "conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
               "dropout": nn.Dropout2d(p = 0.1),
               "adaptive":nn.AdaptiveMaxPool2d((1,1)),
               "flatten": nn.Flatten(),
               "linear1": nn.Linear(64,32),
               "relu":nn.ReLU(),
               "linear2": nn.Linear(32,1),
               "sigmoid": nn.Sigmoid()
              })
    def forward(self,x):
        layers = ["conv1","pool","conv2","pool","dropout","adaptive",
                  "flatten","linear1","relu","linear2","sigmoid"]
        for layer in layers:
            x = self.layers_dict[layer](x)
        return x
net = Net()
print(net)

人工智能
python PyTorch
License:  CC BY 4.0
Share

Further Reading

Feb 8, 2025

DeepSeek 创始人梁文峰采访:创新、人才与中国 AI 发展

一、DeepSeek 引发的震动及其背后原因 当 DeepSeek 震惊了硅谷、美国乃至全世界时,我们来看看 DeepSeek 创始人梁文峰的观点。他认为 DeepSeek 之所以让硅谷的很多人惊讶,是因为这是一个中国公司以创新贡献者的身份加入到他们的游戏里。在大部分中国公司习惯跟随而非创新的大环境

Oct 19, 2024

DVC-DataVersionControl 数据版本管理

介绍 作为一名算法工程师,你是否有这样的困惑,每个实验的数据(配置)文件和模型文件,模型结果无法很好的进行版本管理 这三者的匹配是很麻烦的一个事情,当你做了很多次实验之后,你发现,诶,这个结果对应的参数配置是哪套,对应的数据处理方法是什么?模型文件是怎么命名的,面对文件夹里的一堆开始拼命回忆和翻找

Oct 10, 2024

诺贝尔物理学奖颁给了神经网络

偶然间在CSDN看到了这个官方组织的活动,说明这个话题不止少部分人关注,还是值得思考的。 据法新社10月8日斯德哥尔摩消息,诺贝尔委员会表示:“今年的两位诺贝尔物理学奖获得者利用了物理学方法来寻找信息的特征,构建了为当今强大的机器学习奠定基础的方法。”

OLDER

【PyTorch】3. 读取自定义数据集

NEWER

JavaScript基础

Recently Updated

  • DeepSeek 创始人梁文峰采访:创新、人才与中国 AI 发展
  • 福州-厦门之行
  • 我有自己的摄影网站啦
  • 借助Ollama一键本地部署CodeGeex,让AI帮你打工
  • Dash 进阶技巧

Trending Tags

ssh linux matlab 感悟 读书 blog git python flask ML

Contents

©2025 AngYi. Some rights reserved.

Using the Halo theme Chirpy